
RADIANT Journal of Applied, Social, and Education Studies
e-ISSN: 2723-4614

Volume 7, No. 1 (2026), pp. 78-87

 10.52187/rdt.v7i1.378 | 78

Comparative Analysis of FIFO and LRU Memory
Management Algorithms Using CPU-OS Simulator

v7.5.50

MURSID DWI HASTOMO1 SETYAWAN WIDYARTO2
1,2Universitas Budi Luhur, Jakarta, Indonesia

12411600774@student.budiluhur.ac.id
2setyawan.widyarto@budiluhur.ac.id

Abstract

Efficient memory management is a critical aspect of operating system

performance, as poor management can lead to high page fault rates,
increased execution time, and reduced CPU utilization. This study

examines the performance comparison of two widely used memory
management strategies, First-In-First-Out (FIFO) and Least Recently

Used (LRU), using simulations conducted through the CPU-OS
Simulator v7.5.50. The objective is to observe differences in page fault

rate, execution time, and CPU efficiency across various scenarios.
Three experiments were conducted: first, the impact of

cache/pipeline configuration; second, the influence of process

scheduling on memory management; and third, the effect of memory
size and page access patterns. The results show that LRU tends to

provide a lower page fault rate under heavy workloads, while FIFO
demonstrates advantages when memory is limited and overhead is

minimal. This study contributes to understanding how page
replacement algorithms affect system performance in an operating

system simulation environment.

Keywords: cpu-os simulator v7.5.50, memory management, first-

in-first-out (fifo), least recently used (lru), page fault rate

Copyright © 2026 The Author(s)

This is an open-access article under the CC BY-SA
license.

mailto:2411600774@student.budiluhur.ac.id
mailto:setyawan.widyarto@budiluhur.ac.id

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 79

Kajian Komparatif terhadap Algoritma Manajemen
Memori FIFO dan LRU Menggunakan CPU-OS

Simulator v7.5.50

Abstrak

Manajemen memori yang efisien merupakan aspek krusial dalam
kinerja sistem operasi, karena manajemen yang buruk dapat

menyebabkan tingginya tingkat page fault, meningkatnya waktu
eksekusi, dan berkurangnya pemanfaatan CPU. Penelitian ini

membandingkan kinerja dua strategi manajemen memori yang

banyak digunakan, yaitu First-In-First-Out (FIFO) dan Least
Recently Used (LRU), melalui simulasi menggunakan CPU-OS

Simulator v7.5.50. Tujuannya adalah untuk mengamati perbedaan
tingkat page fault, waktu eksekusi, dan efisiensi CPU pada berbagai

skenario. Tiga eksperimen dilakukan: pertama, pengaruh
konfigurasi cache/pipeline; kedua, pengaruh penjadwalan proses

terhadap manajemen memori; dan ketiga, pengaruh ukuran memori
dan pola akses halaman. Hasil penelitian menunjukkan bahwa LRU

cenderung memberikan tingkat page fault yang lebih rendah pada

beban kerja tinggi, sementara FIFO menunjukkan keunggulan ketika
memori terbatas dan overhead minimal. Penelitian ini berkontribusi

dalam memahami bagaimana algoritma penggantian halaman
memengaruhi kinerja sistem dalam lingkungan simulasi sistem

operasi.

Kata kunci: cpu-os simulator v7.5.50, manajemen memori, first-in-
first-out (fifo), least recently used (lru), page fault rate

PENDAHULUAN

 Memori adalah komponen penting dalam sistem operasi karena berdampak

langsung pada kecepatan akses data dan efisiensi CPU (Titarenko et al., 2024). CPU-

OS Simulator versi 7.5.50 memungkinkan pengguna mensimulasikan pipeline CPU,

scheduling proses, dan manajemen memori secara visual dan terstruktur.

Penelitian ini dilakukan untuk membandingkan dua strategi penggantian

halaman yang umum, yaitu FIFO dan LRU. Perbandingan ini penting karena

performa algoritma penggantian halaman sangat bergantung pada kondisi sistem,

seperti konfigurasi memori, jumlah proses, dan pola akses halaman; kesalahan

dalam manajemen memori dapat menyebabkan page fault tinggi, meningkatnya

waktu eksekusi, dan menurunnya throughput sistem. Dengan melakukan

perbandingan ini, penelitian dapat menunjukkan algoritma mana yang lebih efisien

dalam berbagai skenario, sekaligus memberikan wawasan praktis bagi

pengembangan sistem operasi. Tujuan utamanya adalah mengamati bagaimana

kedua algoritma tersebut memengaruhi page fault rate, waktu eksekusi total, dan

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 80

throughput sistem ketika dikombinasikan dengan konfigurasi memori dan jumlah

proses berbeda (Thakkar & Padhy, 2024; Bengar, 2025). Tiga eksperimen dirancang

menggunakan simulator ini untuk memodelkan alokasi halaman, penggantian

memori, dan performa sistem.

Manajemen memori adalah fungsi penting dalam sistem operasi yang mengatur

pemakaian ruang memori utama oleh berbagai proses. Dalam mekanisme paging,

strategi penggantian halaman menentukan halaman mana yang harus diganti ketika

terjadi page fault. Algoritma FIFO mengganti halaman yang paling awal masuk tanpa

memperhatikan frekuensi atau recency penggunaan. Sedangkan LRU mengganti

halaman yang paling lama tidak digunakan, dengan asumsi bahwa halaman yang

baru digunakan lebih mungkin akan digunakan kembali (Thakkar & Padhy, 2024).

Penelitian terkini menunjukkan bahwa kebijakan penggantian yang adaptif

atau berbasis pola akses dapat memberikan performa lebih baik dibandingkan

metode statis seperti FIFO atau LRU murni (Demin et al., 2024). Berbeda dengan

FIFO yang mengganti halaman tertua dan LRU yang mengganti halaman yang paling

lama tidak diakses, kebijakan adaptif menyesuaikan keputusan penggantian

berdasarkan pola akses halaman, beban kerja saat ini, atau prediksi perilaku proses,

sehingga lebih fleksibel dan efisien. Sebagai contoh, strategi hardware dan software

untuk cache replacement menunjukkan bahwa overhead implementasi dapat

memengaruhi hasil (Titarenko et al., 2024). Pendekatan ini memungkinkan sistem

untuk mengurangi page fault lebih efektif dan meningkatkan kinerja dibandingkan

algoritma statis.

Beberapa studi sebelumnya relevan dengan topik ini. (Thakkar & Padhy, 2024)

melakukan analisis komparatif FIFO, LRU, dan optimal pada sistem simulasi,

namun penelitian mereka terbatas pada skenario tertentu dan tidak mengeksplorasi

kombinasi konfigurasi memori dan jumlah proses. (Abbas et al., 2022) mengkaji lima

algoritma penggantian halaman termasuk FIFO dan LRU di sistem nyata, tetapi

fokusnya lebih pada performa umum tanpa evaluasi mendalam terhadap page fault

dan throughput. (Bengar, 2025) meneliti penerapan LRU, LFU, dan FIFO dalam cache

objek prioritas untuk meningkatkan hit ratio, namun tidak membahas dampak skala

sistem dan variasi beban kerja. (Titarenko et al., 2024) meneliti implementasi

hardware replacement policy (PLRU varian) dalam konteks caching/memory

management, sedangkan (Demin et al., 2024) memperkenalkan algoritma

penggantian halaman berbasis pola akses dengan overhead rendah, menunjukkan

bahwa algoritma klasik seperti FIFO mungkin kurang optimal pada beban tinggi.

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 81

Meskipun penelitian-penelitian tersebut memberikan wawasan penting, masih

terdapat kebutuhan untuk studi sistematis yang membandingkan FIFO dan LRU

secara menyeluruh di berbagai konfigurasi memori, jumlah proses, dan pola akses

halaman menggunakan CPU-OS Simulator v7.5.50. Penelitian ini berkontribusi

dengan menyediakan analisis komparatif yang lebih terstruktur, menyelidiki efek

interaksi antara konfigurasi memori, jumlah proses, dan pola akses terhadap page

fault rate, waktu eksekusi, dan throughput, sehingga memberikan pemahaman yang

lebih lengkap mengenai performa algoritma penggantian halaman dalam lingkungan

simulasi modern.

METODE PENELITIAN

Pada eksperimen pertama, pengujian dilakukan pada modul

CPU/Pipeline/Cache menggunakan CPU-OS Simulator versi 7.5.50. Sistem

dikonfigurasi menggunakan arsitektur dual-core, di mana masing-masing core

memiliki instruction cache sebesar 8 KB dan data cache sebesar 8 KB. Dalam

arsitektur dual-core ini, kedua inti CPU dapat mengeksekusi instruksi secara paralel,

dengan pipeline independen untuk setiap core sehingga meningkatkan throughput

sistem. Instruction cache menyimpan instruksi yang paling sering digunakan oleh

masing-masing core, sedangkan data cache menyimpan data yang sedang diakses.

Konfigurasi ini memungkinkan simulasi perilaku eksekusi paralel, pengelolaan

cache per core, dan pengaruhnya terhadap performa sistem, termasuk page fault rate

dan waktu eksekusi. Eksperimen ini dilakukan dengan menganalisis pengaruh

tingkat cache hit dan cache miss terhadap waktu akses memori, serta bagaimana

kondisi tersebut memengaruhi proses penggantian halaman (page replacement)

dalam sistem. Pengukuran dilakukan menggunakan CPU-OS Simulator v7.5.50

dengan konfigurasi dual-core, instruction cache 8 KB, dan data cache 8 KB per core.

prosedur pelaksanaan mencakup menjalankan tiga program simulasi dengan tingkat

intensitas instruksi yang berbeda, mulai dari beban ringan (few instructions per cycle)

hingga beban berat (many instructions per cycle). Untuk setiap skenario, dicatat

waktu eksekusi dan jumlah cache miss yang terjadi, sehingga data tersebut dapat

digunakan sebagai dasar untuk mengevaluasi kinerja sistem dan efisiensi

manajemen memori. Visualisasi hasil pengukuran ini memungkinkan analisis

perbandingan dampak beban instruksi terhadap performa CPU dan efektivitas

algoritma penggantian halaman.

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 82

Gambar 1. Pipeline Cache Test

Prosedur pelaksanaan mencakup pengujian sistem dalam dua kondisi berbeda,

yaitu dengan tingkat switching yang tinggi dan tanpa switching tinggi, guna

memperoleh gambaran yang lebih jelas mengenai dampaknya terhadap waktu

eksekusi total serta jumlah page fault yang terjadi selama proses simulasi

berlangsung. Eksperimen kedua berfokus pada penjadwalan proses dengan

konfigurasi yang terdiri atas lima proses aktif yang dijalankan secara bersamaan

menggunakan algoritma Round Robin dengan time quantum sebesar 5 milidetik.

Round Robin dipilih karena merupakan algoritma penjadwalan yang adil dan

deterministik, di mana setiap proses mendapatkan jatah waktu CPU secara

bergiliran, sehingga memudahkan analisis pengaruh context switching terhadap

penggunaan memori dan efektivitas algoritma penggantian halaman. Prosedur

pelaksanaan mencakup pengujian sistem dalam dua kondisi berbeda, yaitu dengan

tingkat switching yang tinggi dan tanpa tingkat switching tinggi, untuk memperoleh

gambaran dampaknya terhadap waktu eksekusi total serta jumlah page fault selama

proses simulasi berlangsung.

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 83

Gambar 2. Process Scheduling FIFO

Pada eksperimen ketiga berfokus pada manajemen memori dengan konfigurasi

sistem yang terdiri atas memori utama berkapasitas 2048 KB dan ukuran halaman

sebesar 128 KB. Eksperimen ini menggunakan dua algoritma penggantian halaman,

yaitu FIFO dan LRU, untuk dianalisis kinerjanya dalam kondisi yang berbeda.

Prosedur pelaksanaan dimulai dengan inisialisasi enam proses yang masing-masing

memiliki pola akses halaman berbeda, mencakup tingkat intensitas rendah,

menengah, dan tinggi. Selama proses simulasi, dilakukan pencatatan terhadap

jumlah page fault, total waktu eksekusi, serta throughput sistem sebagai parameter

evaluasi kinerja. Selain itu, dilakukan variasi ukuran memori utama menjadi 1024

KB, 2048 KB, dan 4096 KB untuk mengetahui pengaruh kapasitas memori terhadap

efisiensi kedua algoritma. Seluruh langkah tersebut diulang untuk masing-masing

algoritma, guna memperoleh hasil perbandingan yang komprehensif dan terukur.

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 84

Gambar 3. Memory Management Test

HASIL DAN PEMBAHASAN

Hasil dari eksperimen pertama menunjukkan bahwa konfigurasi cache dengan

kapasitas lebih besar memberikan dampak positif terhadap kinerja sistem. Sebagai

contoh, ketika kapasitas instruction cache dan data cache ditingkatkan dari 4 KB

menjadi 8 KB per core pada arsitektur dual-core, waktu akses rata-rata memori

menurun sebesar sekitar 12%, sedangkan jumlah cache miss berkurang hingga 15%

dibanding konfigurasi kecil. Temuan ini memperkuat hipotesis bahwa peningkatan

kapasitas cache mampu mengurangi tingkat cache miss, sehingga beban akses

terhadap memori utama dapat diminimalkan. Untuk lebih memaksimalkan

performa, strategi seperti peningkatan ukuran cache secara proporsional dengan

jumlah proses aktif, pengaturan cache line yang efisien, dan penggunaan algoritma

penggantian halaman yang adaptif dapat digunakan untuk meminimalkan cache

miss.

Kondisi ini meningkatkan efisiensi pemrosesan data dan menghasilkan waktu

eksekusi yang lebih optimal pada sistem simulasi. Eksperimen dilakukan dalam

konteks arsitektur dual-core dengan pipeline independen dan cache terintegrasi per

core, di mana setiap core memiliki instruction cache 8 KB dan data cache 8 KB.

Pipeline memungkinkan eksekusi instruksi secara paralel, sedangkan cache per core

mengurangi konflik akses memori. Visualisasi arsitektur dual-core dapat

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 85

mempermudah pemahaman aliran instruksi dan data, serta dampak konfigurasi

cache terhadap performa sistem.

Kemudian hasil dari eksperimen kedua pada skenario penjadwalan proses

menunjukkan bahwa algoritma LRU memberikan kinerja yang lebih efisien

dibandingkan algoritma FIFO, terutama pada kondisi sistem dengan frekuensi

context switching yang tinggi. Berdasarkan hasil simulasi, waktu eksekusi total

menggunakan LRU tercatat sekitar 18% lebih rendah dibandingkan FIFO.

Hal ini menunjukkan bahwa kemampuan algoritma LRU dalam menyesuaikan

penggantian halaman berdasarkan tingkat kebaruan (recency) akses berkontribusi

signifikan terhadap peningkatan performa sistem. Dengan demikian, dapat

disimpulkan bahwa LRU lebih adaptif dalam menangani dinamika penggunaan

memori oleh beberapa proses aktif, sehingga menghasilkan efisiensi eksekusi yang

lebih baik pada lingkungan multitasking.

Pada hasil eksperimen ketiga menampilkan perbandingan tingkat page fault

antara algoritma FIFO dan LRU berdasarkan variasi ukuran memori yang

digunakan. Data hasil pengujian dirangkum dalam Tabel 1, yang memperlihatkan

bahwa peningkatan kapasitas memori berpengaruh langsung terhadap penurunan

jumlah page fault pada kedua algoritma. Namun demikian, algoritma LRU secara

konsisten menunjukkan kinerja yang lebih baik dengan jumlah page fault yang lebih

sedikit dibandingkan FIFO pada setiap konfigurasi memori. Selisih rata-rata efisiensi

LRU terhadap FIFO berkisar antara 10% hingga 25,7%, yang menunjukkan bahwa

mekanisme penggantian halaman berbasis recency pada LRU mampu

mengoptimalkan pemanfaatan memori utama dan mengurangi frekuensi akses ke

memori sekunder.

Table 1. Perbandingan Page Fault Rate antara FIFO dan LRU

Ukuran
Memori (KB)

Page Fault FIFO Page Fault LRU Selisih (%)

1024 35 26 25,7 %

2048 22 18 18,1 %

4096 10 9 10,0 %

Hasil menunjukkan bahwa LRU memiliki page fault rate yang lebih rendah dalam

semua konfigurasi ukuran memori, meskipun selisihnya semakin mengecil ketika

memori bertambah besar.

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 86

SIMPULAN

Hasil eksperimen menunjukkan bahwa algoritma LRU lebih adaptif

dibandingkan FIFO dalam menangani pola akses memori karena

mempertimbangkan recency akses halaman. Hal ini tercermin dari page fault rate

yang lebih rendah pada seluruh skenario uji. Berdasarkan Tabel 1, pada ukuran

memori 1024 KB, LRU menghasilkan 26 page fault, lebih rendah dibanding FIFO

dengan 35 page fault (selisih 25,7%). Tren serupa terlihat pada memori 2048 KB

(selisih 18,1%) dan 4096 KB (selisih 10,0%).

Penurunan page fault tersebut berdampak langsung pada efisiensi waktu

eksekusi, sehingga LRU menunjukkan performa lebih baik pada kondisi

multitasking dengan aktivitas memori tinggi. Namun, FIFO tetap memiliki

keunggulan dalam kesederhanaan implementasi dan overhead yang rendah,

sehingga masih relevan untuk sistem dengan sumber daya terbatas.

Secara keseluruhan, hasil eksperimen membuktikan bahwa LRU lebih unggul

dibanding FIFO dalam hal efisiensi manajemen memori, khususnya pada sistem

dengan beban kerja tinggi, sementara FIFO lebih sesuai untuk lingkungan dengan

keterbatasan komputasi.

UCAPAN TERIMA KASIH

Penulis menyampaikan apresiasi yang sebesar-besarnya kepada seluruh pihak

yang telah memberikan dukungan selama proses penelitian dan penyusunan jurnal

ini. Terima kasih kepada para pembimbing, rekan-rekan, serta semua individu yang

telah memberikan bantuan berupa saran, masukan, maupun diskusi yang

konstruktif sehingga penelitian mengenai perbandingan strategi manajemen memori

FIFO dan LRU menggunakan CPU-OS Simulator v7.5.50 dapat terselesaikan dengan

baik.

Penulis juga berterima kasih atas motivasi, dorongan, serta dukungan moral

dari berbagai pihak yang tidak dapat disebutkan satu per satu. Semoga kontribusi

yang diberikan menjadi amal kebaikan dan penelitian ini dapat memberikan manfaat

bagi pengembangan pengetahuan di bidang sistem operasi.

DAFTAR PUSTAKA

Abbas, S. H., Naser, W. A., & Kadhim, L. M. (2022). Study and comparison of

replacement algorithms. International Journal of Engineering Research and

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap…

 10.52187/rdt.v7i1.378 | 87

Advanced Technology (IJERAT), 8(8), 1-6.

https://doi.org/10.31695/IJERAT.2022.8.8.1

Bengar, A. (2025). Priority cache object replacement by using LRU, LFU and FIFO

algorithms to improve cache memory hit ratio. Transactions on Soft Computing,

1(1), 1-13. https://doi.org/10.48314/tsc.v1i1.33

Demin, A., Dorn, Y., Katrutsa, A., Kazantsev, D., Latypov, I., Maximlyuk, Y., &

Ponomaryov, D. (2024). EEvA: Fast expert-based algorithms for buffer page

replacement. CoRR, abs/2405.00154.

Thakkar, B., & Padhy, R. N. (2024). Comparative analysis of page replacement

algorithms in operating system. Journal of Emerging Technologies and

Innovative Research, 11(5).

Titarenko, L., Kharchenko, V., Puidenko, V., Perepelitsyn, A., & Barkalov, A. (2024).

Hardware-based implementation of algorithms for data replacement in cache

memory of processor cores. Computers, 13(7), 166.

https://doi.org/10.3390/computers13070166

Belady, L. A. (1966). A study of replacement algorithms for virtual-storage computers.

IBM Systems Journal, 5(2), 78–101.

 https://doi.org/10.1147/sj.52.007

Denning, P. J. (1968). The working set model for program behavior. Communications

of the ACM, 11(5), 323–333.

https://doi.org/10.1145/363095.363141

Silberschatz, A., Ganapathi, A., & Sharma, V. (2018). Analysis of memory

management techniques in modern operating systems. ACM Computing

Surveys, 50(4), 1–36.

https://doi.org/10.1145/3129288

Zhang, Y., Chen, X., & Li, K. (2021). An efficient page replacement algorithm based

on access frequency and recency. Journal of Systems Architecture, 117,

102118.

https://doi.org/10.1016/j.sysarc.2021.102118

Alsaedi, A., & Awan, I. (2019). Performance evaluation of page replacement

algorithms in virtual memory systems. International Journal of Computer

Applications, 181(44), 14–20.

https://doi.org/10.5120/ijca2019919448

https://doi.org/10.31695/IJERAT.2022.8.8.1
https://doi.org/10.48314/tsc.v1i1.33
https://doi.org/10.3390/computers13070166
https://doi.org/10.1147/sj.52.007
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/3129288
https://doi.org/10.1016/j.sysarc.2021.102118
https://doi.org/10.5120/ijca2019919448

