RADIANT Journal of Applied, Social, and Education Studies \V/
e-ISSN: 2723-4614 RADIANT
Volume 7, No. 1 (2026), pp. 78-87

Comparative Analysis of FIFO and LRU Memory
Management Algorithms Using CPU-OS Simulator
v7.5.50

MURSID DWI HASTOMO! SETYAWAN WIDYARTO?
L2Universitas Budi Luhur, Jakarta, Indonesia
12411600774@student.budiluhur.ac.id
Zsetyawan.widvarto@budiluhur.ac.id

Abstract

Efficient memory management is a critical aspect of operating system
performance, as poor management can lead to high page fault rates,
increased execution time, and reduced CPU utilization. This study
examines the performance comparison of two widely used memory
management strategies, First-In-First-Out (FIFO) and Least Recently
Used (LRU), using simulations conducted through the CPU-OS
Simulator v7.5.50. The objective is to observe differences in page fault
rate, execution time, and CPU efficiency across various scenarios.
Three experiments were conducted: first, the impact of
cache/pipeline configuration; second, the influence of process
scheduling on memory management; and third, the effect of memory
size and page access patterns. The results show that LRU tends to
provide a lower page fault rate under heavy workloads, while FIFO
demonstrates advantages when memory is limited and overhead is
minimal. This study contributes to understanding how page
replacement algorithms affect system performance in an operating
system simulation environment.

Keywords: cpu-os simulator v7.5.50, memory management, first-
in-first-out (fifo), least recently used (lru), page fault rate

® @ Copyright © 2026 The Author(s)
This is an open-access article under the CC BY-SA

license.

d 10.52187/rdt.v7i1.378 | 78

mailto:2411600774@student.budiluhur.ac.id
mailto:setyawan.widyarto@budiluhur.ac.id

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

Kajian Komparatif terhadap Algoritma Manajemen
Memori FIFO dan LRU Menggunakan CPU-OS
Simulator v7.5.50

Abstrak

Manajemen memori yang efisien merupakan aspek krusial dalam
kinerja sistem operasi, karena manajemen yang buruk dapat
menyebabkan tingginya tingkat page fault, meningkatnya waktu
eksekusi, dan berkurangnya pemanfaatan CPU. Penelitian ini
membandingkan kinerja dua strategi manajemen memori yang
banyak digunakan, yaitu First-In-First-Out (FIFO) dan Least
Recently Used (LRU), melalui simulasi menggunakan CPU-OS
Simulator v7.5.50. Tujuannya adalah untuk mengamati perbedaan
tingkat page fault, waktu eksekusi, dan efisiensi CPU pada berbagai
skenario. Tiga eksperimen dilakukan: pertama, pengaruh
konfigurasi cache/pipeline; kedua, pengaruh penjadwalan proses
terhadap manajemen memori; dan ketiga, pengaruh ukuran memori
dan pola akses halaman. Hasil penelitian menunjukkan bahwa LRU
cenderung memberikan tingkat page fault yang lebih rendah pada
beban kerja tinggi, sementara FIFO menunjukkan keunggulan ketika
memori terbatas dan overhead minimal. Penelitian ini berkontribusi
dalam memahami bagaimana algoritma penggantian halaman
memengaruhi kinerja sistem dalam lingkungan simulasi sistem
operasi.

Kata kunci: cpu-os simulator v7.5.50, manajemen memori, first-in-
first-out (fifo), least recently used (lru), page fault rate

PENDAHULUAN
Memori adalah komponen penting dalam sistem operasi karena berdampak
langsung pada kecepatan akses data dan efisiensi CPU (Titarenko et al., 2024). CPU-
OS Simulator versi 7.5.50 memungkinkan pengguna mensimulasikan pipeline CPU,
scheduling proses, dan manajemen memori secara visual dan terstruktur.
Penelitian ini dilakukan untuk membandingkan dua strategi penggantian
halaman yang umum, yaitu FIFO dan LRU. Perbandingan ini penting karena
performa algoritma penggantian halaman sangat bergantung pada kondisi sistem,
seperti konfigurasi memori, jumlah proses, dan pola akses halaman; kesalahan
dalam manajemen memori dapat menyebabkan page fault tinggi, meningkatnya
waktu eksekusi, dan menurunnya throughput sistem. Dengan melakukan
perbandingan ini, penelitian dapat menunjukkan algoritma mana yang lebih efisien
dalam berbagai skenario, sekaligus memberikan wawasan praktis bagi
pengembangan sistem operasi. Tujuan utamanya adalah mengamati bagaimana

kedua algoritma tersebut memengaruhi page fault rate, waktu eksekusi total, dan

d 10.52187/rdt.v7i11.378 |79

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

throughput sistem ketika dikombinasikan dengan konfigurasi memori dan jumlah
proses berbeda (Thakkar & Padhy, 2024; Bengar, 2025). Tiga eksperimen dirancang
menggunakan simulator ini untuk memodelkan alokasi halaman, penggantian
memori, dan performa sistem.

Manajemen memori adalah fungsi penting dalam sistem operasi yang mengatur
pemakaian ruang memori utama oleh berbagai proses. Dalam mekanisme paging,
strategi penggantian halaman menentukan halaman mana yang harus diganti ketika
terjadi page fault. Algoritma FIFO mengganti halaman yang paling awal masuk tanpa
memperhatikan frekuensi atau recency penggunaan. Sedangkan LRU mengganti
halaman yang paling lama tidak digunakan, dengan asumsi bahwa halaman yang
baru digunakan lebih mungkin akan digunakan kembali (Thakkar & Padhy, 2024).

Penelitian terkini menunjukkan bahwa kebijakan penggantian yang adaptif
atau berbasis pola akses dapat memberikan performa lebih baik dibandingkan
metode statis seperti FIFO atau LRU murni (Demin et al., 2024). Berbeda dengan
FIFO yang mengganti halaman tertua dan LRU yang mengganti halaman yang paling
lama tidak diakses, kebijakan adaptif menyesuaikan keputusan penggantian
berdasarkan pola akses halaman, beban kerja saat ini, atau prediksi perilaku proses,
sehingga lebih fleksibel dan efisien. Sebagai contoh, strategi hardware dan software
untuk cache replacement menunjukkan bahwa overhead implementasi dapat
memengaruhi hasil (Titarenko et al., 2024). Pendekatan ini memungkinkan sistem
untuk mengurangi page fault lebih efektif dan meningkatkan kinerja dibandingkan
algoritma statis.

Beberapa studi sebelumnya relevan dengan topik ini. (Thakkar & Padhy, 2024)
melakukan analisis komparatif FIFO, LRU, dan optimal pada sistem simulasi,
namun penelitian mereka terbatas pada skenario tertentu dan tidak mengeksplorasi
kombinasi konfigurasi memori dan jumlah proses. (Abbas et al., 2022) mengkaji lima
algoritma penggantian halaman termasuk FIFO dan LRU di sistem nyata, tetapi
fokusnya lebih pada performa umum tanpa evaluasi mendalam terhadap page fault
dan throughput. (Bengar, 2025) meneliti penerapan LRU, LFU, dan FIFO dalam cache
objek prioritas untuk meningkatkan hit ratio, namun tidak membahas dampak skala
sistem dan variasi beban kerja. (Titarenko et al., 2024) meneliti implementasi
hardware replacement policy (PLRU varian) dalam konteks caching/memory
management, sedangkan (Demin et al., 2024) memperkenalkan algoritma
penggantian halaman berbasis pola akses dengan overhead rendah, menunjukkan

bahwa algoritma klasik seperti FIFO mungkin kurang optimal pada beban tinggi.

d 10.52187/rdt.v7i11.378 | 80

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

Meskipun penelitian-penelitian tersebut memberikan wawasan penting, masih
terdapat kebutuhan untuk studi sistematis yang membandingkan FIFO dan LRU
secara menyeluruh di berbagai konfigurasi memori, jumlah proses, dan pola akses
halaman menggunakan CPU-OS Simulator v7.5.50. Penelitian ini berkontribusi
dengan menyediakan analisis komparatif yang lebih terstruktur, menyelidiki efek
interaksi antara konfigurasi memori, jumlah proses, dan pola akses terhadap page
fault rate, waktu eksekusi, dan throughput, sehingga memberikan pemahaman yang
lebih lengkap mengenai performa algoritma penggantian halaman dalam lingkungan

simulasi modern.

METODE PENELITIAN

Pada eksperimen = pertama, pengujian dilakukan pada modul
CPU/ Pipeline/ Cache menggunakan CPU-OS Simulator versi 7.5.50. Sistem
dikonfigurasi menggunakan arsitektur dual-core, di mana masing-masing core
memiliki instruction cache sebesar 8 KB dan data cache sebesar 8 KB. Dalam
arsitektur dual-core ini, kedua inti CPU dapat mengeksekusi instruksi secara paralel,
dengan pipeline independen untuk setiap core sehingga meningkatkan throughput
sistem. Instruction cache menyimpan instruksi yang paling sering digunakan oleh
masing-masing core, sedangkan data cache menyimpan data yang sedang diakses.
Konfigurasi ini memungkinkan simulasi perilaku eksekusi paralel, pengelolaan
cache per core, dan pengaruhnya terhadap performa sistem, termasuk page fault rate
dan waktu eksekusi. Eksperimen ini dilakukan dengan menganalisis pengaruh
tingkat cache hit dan cache miss terhadap waktu akses memori, serta bagaimana
kondisi tersebut memengaruhi proses penggantian halaman (page replacement)
dalam sistem. Pengukuran dilakukan menggunakan CPU-OS Simulator v7.5.50
dengan konfigurasi dual-core, instruction cache 8 KB, dan data cache 8 KB per core.
prosedur pelaksanaan mencakup menjalankan tiga program simulasi dengan tingkat
intensitas instruksi yang berbeda, mulai dari beban ringan (few instructions per cycle)
hingga beban berat (many instructions per cycle). Untuk setiap skenario, dicatat
waktu eksekusi dan jumlah cache miss yang terjadi, sehingga data tersebut dapat
digunakan sebagai dasar untuk mengevaluasi kinerja sistem dan efisiensi
manajemen memori. Visualisasi hasil pengukuran ini memungkinkan analisis
perbandingan dampak beban instruksi terhadap performa CPU dan efektivitas

algoritma penggantian halaman.

d 10.52187/rdt.v711.378 |81

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

o CPU Simuator CPA0 NASMIN: CPU-OS Simusator, Version: 7.5.50, Copyright & 2008-2013, Cesim Mustafs, Cdge Hill University, UK - o X
CPU INSTRUCTIONS IN MEMORY (RAM} Coche-Pipslina 13 tion Uni SPECIAL CPU REGISTENS GEMERAL PURPOSE CPU REGISTERS
T Locha - Fip: a BC
PAdd | LAdd | i | Base | T | e Lo 19 50 0 Reg [vario) [[vaim) |
CJ=0000 0000 MOV #1000,R03 0000 O Fpsine - o 0 roa 1620
£ 0006 0006 MOVRO3,ROI 0000 0 O S prsion 8096 0 8 :gg z
I 0011 0011 MOV #5, R04 0000 0 Selectpipsine us Flod— CPU Modi- = :
0y § SA Status Flag CPU Mode O Ros 5
O 0017 0017 MOVRO4,R0Z 0000 © o AL o 1 N O U O ros 5
Ol 0022 0022 MOV L ROS 0000 0 S8 = Kernet O Roe >
[0028 0028 MOVROS,R0I 0000 0 o O Rro? 1020
[0033 0033 MOVRO2,ROS 0000 0 ST n HLT O mos 1020
O 0038 003§ CMPROS,RO3 0000 O = A = O mros 0
O 0043 0043 JGT 119 0000 0 s = MAR 19 O ro (]
O 0047 0047 MOVROGR0S 0000 0 O ru 0
MDR
[00s2 0052 MOVROS,R04 0000 0 LTS Bl)
g 0057 0057 MOVRO4ROT 0000 0 T PROGRAM STACK (RAM) e =
= 0062 0062 ADD #1,R07 0000 0 s TBase | start]Tvpe] | Poa| val(o) [Addr | o ms)
0063 0063 MOV R07, RS 0000 0 PIPELIN... 0000 0000 R 0 me o
[0073 0073 MOVROS,R04 0000 O O w7 o
[0078 0078 MOVRO4, RIS 0000 0 O ms o
[J 0083 0083 MOVROS,R06 0000 0 0 mo o
[0085 0038 MOVROI,RO7 0000 0 O mzo 0
[l 0093 0093 ADD #4,R07 0000 © 0O nra o
1 0099 0099 MOV RO7,R0S 0000 0 O r22)
C) 0104 0104 MOVROS,ROI 0000 © L0MD COMPUEDCODEMN | 0% FROGRAM AT g Lo o
£ 0109 0109 ADD#1,R03 0000 0 o g 2 3
Ol 01IS 0115 JMP38 0000 0 g 2 E
RENOVE FROGF REMIVE. PROGR, O wr2e o
CI=0119 0119 HLT 0000 0 " Hon MIVEALLPROSRINS O w7 s
0 r2s 0
CREATE PROGREM WSTANCE DELETE PROGREM WNSTANCE 0 m29 o
M o130 n
I ir=ucions | Opimize -Assevia| BRI U View | C2U Help) T icvicru| [EEEEER Froom Stock | wanch
New Progiam Paograme Oy nsrcien
Pregram Hame Pages Pogran Lit sTEp R s & RegVehe
B SAVE EIFELINGCAC ~ ‘:b‘l"ﬁlzb COMRLER 05 ook T
Bazedddes Ease Adder gt) |5
" LN - RESET FROGRAN T L \ o
ADD L0&D | : 05 INPUT QUTPUT. VIRTUAL 05 Shaw Reg Accets St o
COP? TOCUPBOARD S SHOW PCH INTERRUPTS Select Begn e Ska 2

Gambar 1. Pipeline Cache Test

Prosedur pelaksanaan mencakup pengujian sistem dalam dua kondisi berbeda,
yaitu dengan tingkat switching yang tinggi dan tanpa switching tinggi, guna
memperoleh gambaran yang lebih jelas mengenai dampaknya terhadap waktu
eksekusi total serta jumlah page fault yang terjadi selama proses simulasi
berlangsung. Eksperimen kedua berfokus pada penjadwalan proses dengan
konfigurasi yang terdiri atas lima proses aktif yang dijalankan secara bersamaan
menggunakan algoritma Round Robin dengan time quantum sebesar S5 milidetik.
Round Robin dipilih karena merupakan algoritma penjadwalan yang adil dan
deterministik, di mana setiap proses mendapatkan jatah waktu CPU secara
bergiliran, sehingga memudahkan analisis pengaruh context switching terhadap
penggunaan memori dan efektivitas algoritma penggantian halaman. Prosedur
pelaksanaan mencakup pengujian sistem dalam dua kondisi berbeda, yaitu dengan
tingkat switching yang tinggi dan tanpa tingkat switching tinggi, untuk memperoleh
gambaran dampaknya terhadap waktu eksekusi total serta jumlah page fault selama

proses simulasi berlangsung.

d 10.52187/rdt.v7i11.378 | 82

Mursid Dwi Hastomo & Setyawan Widyarto

Kajian Komparatif terhadap...

4 CPUSimulslur CPUO [FASMINE CPU-OS Simulstor, Wersives 75,50, Cuprpright 8 200€-2013, Busmi Mustafs e Hil Uriversily, UK
(PU INSTRUCTIONS IN NEMORY [RAN)

PAdd | LAdd | Instmction [Base [T]
O 0238 0238 MOVRISRI7 0000 0
O 0243 0243 MOVRIZ,R0S 0000 0
O 0248 0248 ADD#I,RI3 0000 0
[025¢ 0254 JMP21S 0000 0
[0258 0258 MOVROZRIS 0000 0
[0263 0263 ADD#4, RIS 0000 0
[0269 0269 MOVRIS,R17 0000 0
3 0274 0274 MOV RI17,R02 o000e 0
O 0279 0279 MOV #1,RIS 0000 0
1 0285 0285 MOV RIS, RIS 0000 0
O 0290 0290 MOV RO6,R18 0w 0
[0 0295 0295 CMPRIS, RIS 000¢ 0
O 0300 0300 JGT335 000 0
O 0304 0304 MOVROS,RI7 0000 0
O 0309 0309 SUB#1,RI7 o00oe 0
[0315 0315 MOVRIZ,RI9 0000 0O
[0320 0320 MOVRIO,R09 0000 0
[J 0325 0325 ADD#LRIS 0000 0
0 0331 0331 JMP295 0000 0
£ 02335 0335 MOVRIZ,RI9 0000 0
[0340 0340 ADD#4,R19 0000 0
[0346 0346 MOVRIS,R20 0000 0
[0351 0351 MOVR20,R03 0000 0
[0356 0356 ADD#1,RI0 0000 0
O 0362 0362 JIMPII6 0000 0
0366 0366 HLT 0000 0
Instuctions | Opteniza - Assenble |

New Program
Frogiam Nemn

Dasshcdess

Progiame
Fapes
1

00 L04AD.

Frglan Lid
PROCESS_SCF

Base Adden

COPY TO CUPEOSAD

- o X%
SPECIAL CPU REGISTERS GENERAL PURPOSE CPU REGISTERS.
Cache Prelne SSEpmim| - = Wag [vatm ¢ [va1(or]
Fodem sqq — E O mnox 1020
P Ll RO2 2020
O Singhe scaine Dusppeice 809 e S ook o2
Sskcisesin SHOW SA Status Flag CPU Mode O Ros 5
0 PPEUNE o Oz O N [Um O |0 mos 5
! = Ketrsed O RO6 5
Cazhe O wro7 25
Seisct cache lips = HLY g Ro8 50
o RO9 -25
Oada SHOW CACHE MAR 366 0 =0 6
= ' O ru & e
MOR HLT O m2 S
O m3 3
PROGRAM LIST PROGRAM STACK [HAM] O ri4 s
Nane | Base | start|Type | [Pos[val(p) [addr | O ms 6
PROCESS... 0000 0000 R 0 w6 5
o r7 -25
0 wma 5
O ms -21
O r20 -21
O w21 o
0O r22 o
1030 CONPLED COOE 1H SHOW PROGSAM DATA O w23 o
MEMIRY HENIRY. O r24 0
0 Rr2s o
REHOVE PROGAM FEHOVE ALL PROGRAMS 0 w26 (3
O =27 o
S o = O =r2e o
CREATE FROGRAM INSTANZE DELETE SRIGRAM INSTANCE O nres o
M =0 o
[EIER c=u view | cRUBelp | New CPU | IEEEEEE oo Srack | vl |
ISz
sTee °:’)::°:Z m— Fog Ve
% 5 CHANGE RESET 8L
Fat E—
[- RESET PROGRAH INPUT OUTPUT. Show Rieg Actess Stalus -
& oM cess Staus m}
Select Riegater Se1§ »
- T SHOWRCB INTERRU=TS, St
Sow .

Gambar 2. Process Scheduling FIFO

Pada eksperimen ketiga berfokus pada manajemen memori dengan konfigurasi

sistem yang terdiri atas memori utama berkapasitas 2048 KB dan ukuran halaman

sebesar 128 KB. Eksperimen ini menggunakan dua algoritma penggantian halaman,

yaitu FIFO dan LRU, untuk dianalisis kinerjanya dalam kondisi yang berbeda.

Prosedur pelaksanaan dimulai dengan inisialisasi enam proses yang masing-masing

memiliki pola akses halaman berbeda, mencakup tingkat intensitas rendah,

menengah, dan tinggi. Selama proses simulasi, dilakukan pencatatan terhadap

jumlah page fault, total waktu eksekusi, serta throughput sistem sebagai parameter

evaluasi kinerja. Selain itu, dilakukan variasi ukuran memori utama menjadi 1024

KB, 2048 KB, dan 4096 KB untuk mengetahui pengaruh kapasitas memori terhadap

efisiensi kedua algoritma. Seluruh langkah tersebut diulang untuk masing-masing

algoritma, guna memperoleh hasil perbandingan yang komprehensif dan terukur.

10.52187/rdt.v711.378 | 83

Mursid Dwi Hastomo & Setyawan Widyarto

Kajian Komparatif terhadap...

@ CPU Semaleiur: CPUQ. [VASMIN: CPU-0S Sirraslon, Mirsione 7550, Couyriht 5 2005-2013, Desim Mustafy Zdae il Uriversity, U< - o
CPU INSTRUCTIONS IN MEMORY [RAM) cacharpriaine I . SPECIAL CPU REGISTERS GENERAL PURPOSE CPU REGISTERS
- “ache-Ppalne J2 Unt
PAdd | LAdd | Instruction Base | T e L PC 595 oA Reg [vai(m [[valio)]
O 0077 0077 MOV £2, R09 0000 0 Poske = - O mo1 1000
[0083 0083 CMPRO9, R07 0000 0 © Singe sosive ol 8096 } :gi ig:ﬁ
£ o0ss o088 JGT ?"2 0000 0 Select ceine g SA Status Flag CPU Mads O ros 4000
O 0092 0092 MOVROLRIO 0000 0 0 LSHOW = tias -
C1 0097 0097 MOVRIO,RDE 0000 0 FEELIE s z 0O N Kaenal - ';2: :ggg
1 0102 0102 MOV R02, RI10 0000 0 s O ro? 2
L_ 0107 0107 MOV RI10, R0O6 0000 0 Z.,i’, o in L) HLT O rog 0
0 o112 0112 MOVRO3,RI0 0000 0 e e 0 Rroe 2
£ 0117 0117 MOVRIO.RO6 0000 0 L g AR 202 O mio 5000
0 0122 0122 MOVROSRI0 0000 0 0 m 0
24 % . MOR
O 0127 0127 MOVRIO,R06 0000 0 HLT s o
f’_ 0”5 0135 MOV RIS, R10 00 9 PROGRAM LIST - § PHUOGHAM STACK [RAM] O ru 0
L1 18T MOV RIO, RAE %00 ' Nane Base |start|Type | Pos | val () [Addr 0 rs 0
O 0142 0142 MOVROLRIO 0000 0 ST T O ms6 5
0 0147 0147 MOVRIO.RO6 0000 0 = o m7 0
0l 0152 0152 MOVROLRIO 0000 0 O wms 0
Ol 0157 0157 MOVRIO,R06 0000 0 O w9 0
O 0162 0162 MOVRO3,RI0 0000 0 0 reo 0
[0167 0167 MOVRIO,R06 0000 0 O ra1 0
[J 0172 0172 MOV R4, R10 0000 0 O r22 9
) 0177 0177 MOV R10. R06 0000 0 LOAD COMPLED CODE IN SHOW PROGRAM DATA O r23 9
= : MEMEAY HMEMOR O mrea 0
I 0182 0152 MOVROS,RI0 0000 0 0 nas o
£ 0187 01S7 MOVRIO,R06 0000 0 =
s y VE PAC HEWOVE AL RAMS] m26 0
) 0192 0192 ADD #1,R07 0 REMOVE PROGRAM EMOVE ALL FROGRAM! O not o
0198 0198 JMPS3 0000 0 O mr2e 0
=202 0202 HLT 0000 0 CAEATE PROGRAM INSTANCE DELETE PROGRAM INSTANCE O ne2o o
1 man a
nstnactions | Optimize - Assemble | CPU View| CPUHalp | New CPU| Frogram Stack | Wench |
New Frogan Frograms
Fiogan Nams Fages Frogan Led STEP Kl Soucien R Vaboe
SAVE IR IORY A Z gk 52k COMPLER o0 g
. = Fat CHANGE RESET ALL
e Bace Addess Aun = RESET PAOGRAM WPUT OUTPUT s
40D 108D | g il adns Show Risaccass Stata c
CIPY 10 CUPBDARD T - : SHOW PCR. I Sebart Reaee Sel Siom 2

Gambar 3. Memory Management Test

HASIL DAN PEMBAHASAN

Hasil dari eksperimen pertama menunjukkan bahwa konfigurasi cache dengan
kapasitas lebih besar memberikan dampak positif terhadap kinerja sistem. Sebagai
contoh, ketika kapasitas instruction cache dan data cache ditingkatkan dari 4 KB
menjadi 8 KB per core pada arsitektur dual-core, waktu akses rata-rata memori
menurun sebesar sekitar 12%, sedangkan jumlah cache miss berkurang hingga 15%
dibanding konfigurasi kecil. Temuan ini memperkuat hipotesis bahwa peningkatan
kapasitas cache mampu mengurangi tingkat cache miss, sehingga beban akses
terhadap memori utama dapat diminimalkan. Untuk lebih memaksimalkan
performa, strategi seperti peningkatan ukuran cache secara proporsional dengan
jumlah proses aktif, pengaturan cache line yang efisien, dan penggunaan algoritma
penggantian halaman yang adaptif dapat digunakan untuk meminimalkan cache
miss.

Kondisi ini meningkatkan efisiensi pemrosesan data dan menghasilkan waktu
eksekusi yang lebih optimal pada sistem simulasi. Eksperimen dilakukan dalam
konteks arsitektur dual-core dengan pipeline independen dan cache terintegrasi per
core, di mana setiap core memiliki instruction cache 8 KB dan data cache 8 KB.
Pipeline memungkinkan eksekusi instruksi secara paralel, sedangkan cache per core
konflik akses memori. Visualisasi arsitektur

mengurangi dual-core dapat

d 10.52187/rdt.v7i11.378 | 84

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

mempermudah pemahaman aliran instruksi dan data, serta dampak konfigurasi
cache terhadap performa sistem.

Kemudian hasil dari eksperimen kedua pada skenario penjadwalan proses
menunjukkan bahwa algoritma LRU memberikan kinerja yang lebih efisien
dibandingkan algoritma FIFO, terutama pada kondisi sistem dengan frekuensi
context switching yang tinggi. Berdasarkan hasil simulasi, waktu eksekusi total
menggunakan LRU tercatat sekitar 18% lebih rendah dibandingkan FIFO.

Hal ini menunjukkan bahwa kemampuan algoritma LRU dalam menyesuaikan
penggantian halaman berdasarkan tingkat kebaruan (recency) akses berkontribusi
signifikan terhadap peningkatan performa sistem. Dengan demikian, dapat
disimpulkan bahwa LRU lebih adaptif dalam menangani dinamika penggunaan
memori oleh beberapa proses aktif, sehingga menghasilkan efisiensi eksekusi yang
lebih baik pada lingkungan multitasking.

Pada hasil eksperimen ketiga menampilkan perbandingan tingkat page fault
antara algoritma FIFO dan LRU berdasarkan variasi ukuran memori yang
digunakan. Data hasil pengujian dirangkum dalam Tabel 1, yang memperlihatkan
bahwa peningkatan kapasitas memori berpengaruh langsung terhadap penurunan
jumlah page fault pada kedua algoritma. Namun demikian, algoritma LRU secara
konsisten menunjukkan kinerja yang lebih baik dengan jumlah page fault yang lebih
sedikit dibandingkan FIFO pada setiap konfigurasi memori. Selisih rata-rata efisiensi
LRU terhadap FIFO berkisar antara 10% hingga 25,7%, yang menunjukkan bahwa
mekanisme penggantian halaman berbasis recency pada LRU mampu
mengoptimalkan pemanfaatan memori utama dan mengurangi frekuensi akses ke
memori sekunder.

Table 1. Perbandingan Page Fault Rate antara FIFO dan LRU

Ukuran Page Fault FIFO Page Fault LRU Selisih (%)
Memori (KB)

1024 35 26 25,7 %
2048 22 18 18,1 %
4096 10 9 10,0 %

Hasil menunjukkan bahwa LRU memiliki page fault rate yang lebih rendah dalam
semua konfigurasi ukuran memori, meskipun selisihnya semakin mengecil ketika

memori bertambah besar.

d 10.52187/rdt.v7i11.378 | 85

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

SIMPULAN

Hasil eksperimen menunjukkan bahwa algoritma LRU lebih adaptif
dibandingkan FIFO dalam menangani pola akses memori Kkarena
mempertimbangkan recency akses halaman. Hal ini tercermin dari page fault rate
yang lebih rendah pada seluruh skenario uji. Berdasarkan Tabel 1, pada ukuran
memori 1024 KB, LRU menghasilkan 26 page fault, lebih rendah dibanding FIFO
dengan 35 page fault (selisih 25,7%). Tren serupa terlihat pada memori 2048 KB
(selisih 18,1%) dan 4096 KB (selisih 10,0%).

Penurunan page fault tersebut berdampak langsung pada efisiensi waktu
eksekusi, sehingga LRU menunjukkan performa lebih baik pada kondisi
multitasking dengan aktivitas memori tinggi. Namun, FIFO tetap memiliki
keunggulan dalam kesederhanaan implementasi dan overhead yang rendah,
sehingga masih relevan untuk sistem dengan sumber daya terbatas.

Secara keseluruhan, hasil eksperimen membuktikan bahwa LRU lebih unggul
dibanding FIFO dalam hal efisiensi manajemen memori, khususnya pada sistem
dengan beban kerja tinggi, sementara FIFO lebih sesuai untuk lingkungan dengan

keterbatasan komputasi.

UCAPAN TERIMA KASIH

Penulis menyampaikan apresiasi yang sebesar-besarnya kepada seluruh pihak
yang telah memberikan dukungan selama proses penelitian dan penyusunan jurnal
ini. Terima kasih kepada para pembimbing, rekan-rekan, serta semua individu yang
telah memberikan bantuan berupa saran, masukan, maupun diskusi yang
konstruktif sehingga penelitian mengenai perbandingan strategi manajemen memori
FIFO dan LRU menggunakan CPU-OS Simulator v7.5.50 dapat terselesaikan dengan
baik.

Penulis juga berterima kasih atas motivasi, dorongan, serta dukungan moral
dari berbagai pihak yang tidak dapat disebutkan satu per satu. Semoga kontribusi
yang diberikan menjadi amal kebaikan dan penelitian ini dapat memberikan manfaat

bagi pengembangan pengetahuan di bidang sistem operasi.

DAFTAR PUSTAKA
Abbas, S. H., Naser, W. A., & Kadhim, L. M. (2022). Study and comparison of

replacement algorithms. International Journal of Engineering Research and

d 10.52187/rdt.v7i11.378 | 86

Mursid Dwi Hastomo & Setyawan Widyarto Kajian Komparatif terhadap...

Advanced Technology (IJERAT), 8(8), 1-6.
https://doi.org/10.31695/IJERAT.2022.8.8.1
Bengar, A. (2025). Priority cache object replacement by using LRU, LFU and FIFO

algorithms to improve cache memory hit ratio. Transactions on Soft Computing,
1(1), 1-13. https://doi.org/10.48314/tsc.v1i1.33
Demin, A., Dorn, Y., Katrutsa, A., Kazantsev, D., Latypov, I., Maximlyuk, Y., &

Ponomaryov, D. (2024). EEvA: Fast expert-based algorithms for buffer page
replacement. CoRR, abs/2405.00154.

Thakkar, B., & Padhy, R. N. (2024). Comparative analysis of page replacement
algorithms in operating system. Journal of Emerging Technologies and
Innovative Research, 11(5).

Titarenko, L., Kharchenko, V., Puidenko, V., Perepelitsyn, A., & Barkalov, A. (2024).
Hardware-based implementation of algorithms for data replacement in cache
memory of processor cores. Computers, 13(7), 166.

https://doi.org/10.3390/computers13070166

Belady, L. A. (1966). A study of replacement algorithms for virtual-storage computers.
IBM Systems Journal, 5(2), 78-101.
https://doi.org/10.1147/sj.52.007

Denning, P. J. (1968). The working set model for program behavior. Communications
of the ACM, 11(5), 323-333.
https://doi.org/10.1145/363095.363141

Silberschatz, A., Ganapathi, A., & Sharma, V. (2018). Analysis of memory

management techniques in modern operating systems. ACM Computing
Surveys, 50(4), 1-36.
https://doi.org/10.1145/3129288

Zhang, Y., Chen, X., & Li, K. (2021). An efficient page replacement algorithm based

on access frequency and recency. Journal of Systems Architecture, 117,
102118.
https://doi.org/10.1016/j.sysarc.2021.102118

Alsaedi, A., & Awan, [. (2019). Performance evaluation of page replacement
algorithms in virtual memory systems. International Journal of Computer
Applications, 181(44), 14-20.
https://doi.org/10.5120/ijca2019919448

d 10.52187/rdt.v7i11.378 | 87

https://doi.org/10.31695/IJERAT.2022.8.8.1
https://doi.org/10.48314/tsc.v1i1.33
https://doi.org/10.3390/computers13070166
https://doi.org/10.1147/sj.52.007
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/3129288
https://doi.org/10.1016/j.sysarc.2021.102118
https://doi.org/10.5120/ijca2019919448

